EXPERIENCE AND REASON—Briefly Recorded

"In Medicine one must pay attention not to plausible theorizing but to experience and reason together... I agree that theorizing is to be approved, provided that it is based on facts, and systematically makes its deductions from what is observed... But conclusions drawn from unaided reason can hardly be serviceable; only those drawn from observed fact."

Hippocrates: Precepts. (Short communications of factual material are published here. Comments and criticisms appear as letters to the Editor.)

Return of Spontaneous Respiration in an Infant Who Fulfilled Current Criteria to Determine Brain Death

CASE REPORT

This 3-month-old girl had been born at term by normal delivery and seemed healthy before the accident. She was discovered to be apneic during her midday nap. Although cardiopulmonary resuscitation was immediately begun by her mother, the cardiac arrest was recognized 5 minutes later when paramedics arrived. The patient was taken to a local hospital, where successful cardiopulmonary resuscitation was performed; she regained a sinus heart rhythm and then regained spontaneous respiration 40 minutes later. She was transported to our tertiary care facility.

On admission the infant was deeply comatose and dehydrated. Transient hypotension existed and improved with infusion of electrolytes and colloids. Neither catecholamines nor diuretic hormone (ADH) was required to maintain the hemodynamics. She had equal and reactive pupils (diameters of 2.5 mm) and intact brainstem reflexes, which were induced by ocucopehalic, caloric, and gag testing. Her spontaneous respiration was regular with a rate of 30 to 35 breaths per minute. The anterior fontanelle was open and slightly bulged. The extremities were spastic with bilateral Babinski signs, and decerebrated posturing was observed with pinprick stimulation. She was hypothermic, with a body temperature of 34.8°C and was warmed by an electric blanket. Laboratory testing showed the presence of persistent hypoglycemia (blood glucose level <30 mg/dL). Continuous administration of glucose at a rate of 9 mg/kg per minute was required to maintain a normal blood glucose level. This hypoglycemia was proven by a glucose test to be caused by hyperinsulinemia. The other laboratory data were almost within normal limits. She had no proclivities of respiratory tract symptoms before the accident and no clinical findings suggesting infectious diseases such as encephalitis. Because the initial intensive care improved her systemic circulation and hypoglycemia, the following dehydrating therapy was done to prevent the aggravation of cerebral edema. An appropriate dosage of 20% glycine and lactated Ringer's solution with 20% glucose was infused.

Despite supportive measures, improvement of hypoglycemia and hypotension, no hypertension, and no cerebral or hypoxic brain injuries had occurred. The infant's neural condition gradually deteriorated. On the second day in the hospital (day 2), her respiration was completely synchronized with the respirator. Her pupils were dilated and were fixed in the midposition, and then presence of corneal and gag reflexes became unclear. Computed tomography (CT) revealed the presence of a mild cerebral edema and revealed the absence of herniation, a focal hemorrhage, and other lesions. The whole brain was well enhanced in a contrast CT. Brainstem auditory evoked responses (BAERs) showed a bilateral presence of waves I through V. On day 3, the physical examinations revealed a deep coma, fully dilated pupils (diameters of 6 mm) that did not respond to light, and the absence of corneal, gag, cough, sucking, and rooting reflexes. No eye movements were induced by ocucopehalic and caloric testing. She had a flaccid tone, no spontaneous movements, and no movements elicited by painful stimulation. There was no bulge of the anterior fontanelle. The absence of spontaneous respiration was determined by an apnea test (PCO2 of 69.3 mm Hg). An EEG was performed in accordance with the standards of the American Electroencephalographic Society. The record was taken during a 30-minute period, and the gain was at the setting of 5 to 10 μV/mm. Two neurologists evaluated the EEG in detail, and both of them agreed that it was consistent with electrical cerebral silence. On day 5, after 48 hours of observation, neurologic examinations were repeated and unchanged. An apnea test performed again demonstrated the absence of respiratory response to PCO2 of 62.1 mm Hg. An EEG revealed no electrical activity components. At this time, according to the Brain Death Task Force. However, since the cause brain death in Japan is defined as a PCO2 rate of 27 to 33, end-stage hypothalamic-pituitary-hypothalamic hormone level remains elevated, and the infusion of 0.2% saline solution of plasma adenocortical function, which was twice as the basal brainstem. Argininefailed to induce biological osmolality and K+ level reached 12 hours of water deprivation and ADH secretion.

There was also a possibility that she regained consciousness after the transplantation with the tidal volume of air and the gas exchanged, an apnea test (PCO2 of 30.1 mm Hg), which was performed at the other hospital by the nasopharyngeal tube. The decision to terminate was made due to the lack of any further indications that the brainrough. Lii et al. confirmed that the majority of the gradient of the medulla of the cord in structure of brainstem and the other. The changes in this appearance of the medulla.

Before considering the cause of consciousness and the possibility of the disease.

2-12	3-11
4-12	5-11
6-12	7-11
8-12	13-11
14-12	15-11
16-12	EGG

Fig 1. EEG at end of cerebral silence.
The patient was diagnosed as brain dead according to the current guidelines, including those of the Task Force. However, supportive measures to her were continued, because brain death in infants has not yet been accepted as legal death in Japan. She only received an infusion of 20% glucose at 600 mL/day and continuous enteral feeding afterward. The hemodynamics were kept stable for the next 2 months with no vasoactive drugs such as catecholamines or ADH. On days 7, 14, and 21, neurologic examinations excluding apnea tests, EEGs, and BAERs were repeated and continued unchanged. On day 19, a CT with contrast demonstrated remarkable atrophy of the cerebral cortex but demonstrated cerebral blood flow in the whole brain (Fig 2). On day 22, four-vessel cerebral angiography disclosed almost normal visualization of the cerebral circulation (Fig 3). From days 27 to 33, endocrine assessment was performed to evaluate hypothalamic-hypophyseal function. By the infusion of 250 µg of thyrotropin-releasing hormone, the plasma thyroid-stimulating hormone level rose to 11 mU/L. Hypoglycemia induced by the infusion of 0.3 U/kg insulin significantly stimulated the secretion of plasma adrenocorticotropic hormone and plasma cortisol as twice as the base line. The infusion of 0.3 U/kg insulin or 0.5 g/kg arginine failed to increase the serum growth hormone level. A water deprivation test revealed an obvious increase of the urine osmolality and the plasma ADH level. Urine and plasma osmolality reached more than 2, and urine output decreased after 16 hours of water deprivation. The relationship of plasma osmolality and ADH secretion was delineated.

There was little change in the infant's condition until day 43, when she regained spontaneous respiration. The respiration irregularly occurred at a rate of two to three breaths per minute and with a tidal volume of 40 to 50 mL. The arterial blood gases when the respiration recurred revealed a PO₂ of 122.5 mm Hg, a PCO₂ of 30.1 mm Hg, and a pH of 7.35. Neither the stimulation with an apnea test (PCO₂ of 73.5 mm Hg maximally) nor infusion of 20 mg of doxapram increased the rate of spontaneous respiration and tidal volume at all. The other neurologic signs including brainstem reflexes and ancillary tests of EEGs and BAERs were carefully examined, and those results remained unchanged. The irregular spontaneous respiration had continued until day 71, when she died of pneumonia. At autopsy, the structure of the whole brain was preserved. There was no cerebral liquefaction like a “respirator brain.” Light microscopic findings revealed total necrosis in most of the gray matter, including layers of the cerebral cortex and medulla of the brain stem. The white matter had its preserved structure though nuclear pyknosis and chromatolysis, and a hardly stainable cell shadow (ghost cell) was frequently observed. The changes in the cerebellum were relatively mild. The histologic appearance of neosidioblastosis was seen in the pancreas.

DISCUSSION

Before certification of brain death, the proximate cause of coma must be determined, and irreversibility of the disorders must be confirmed. Almost all the guidelines, therefore, list examples of potentially reversible conditions, such as metabolic disorders, a drug-induced coma, and hypothermia. In our case, severe hypoglycemia caused by hyperinsulinemia is suggested to have caused unexpected apnea. Histologic evidence proved pancreatic neosidioblastosis, which is one of the major causes of infant hyperinsulinemia, and which possibly can cause unexpected apnea or sudden death in infants. Our patient's brain would be severely damaged by insults of both hypoglycemia and anoxia. Hypoglycemia was immediately corrected, and the absence of other reversible or remediable conditions was confirmed in the determination of brain death.

Neurologic examinations and EEGs fulfilled the current criteria to determine brain death in our patient. According to the task force's guidelines, she was diagnosed as brain dead on day 5. However, we thought that she was different from typical brain-dead patients. First, her cerebral injury was caused neither by trauma nor hemorrhage, but by metabolic disorders of hypoglycemia and hypoxia. Second, delayed neurologic deterioration occurred in the absence of intracranial hypertension caused by massive cerebral edema. Third, there was no sequential

Fig 1. EEG after 48 hours of observation demonstrates electrocerebral silence: S = 5 µV/mm; high-cut filter, 120 Hz.

Fig 2. A, CT on day 19 demonstrates marked cerebral atrophy of the supratentorial gray and white matter. B, Contrast-enhanced CT on the same day demonstrates evidence of cerebral blood flow.
electrical activity. (Fig 1). BAERs showed bilateral loss of all components. At that point, the patient was diagnosed as brain dead according to the current guidelines, including those of the Task Force. However, supportive measures to her were continued, because brain death in infants has not yet been accepted as legal death in Japan. She only received an infusion of 10% glucose at 600 ml/day and continuous central feeding afterward. The hemodynamics were kept stable for the next 2 months with no vasoactive drugs such as catecholamines or ADH. On days 7, 14, and 21, neurologic examinations including upper tests, EEGs, and BAERs were repeated and remained unchanged. On day 19, a CT with contrast demonstrated remarkable atrophy of the cerebral cortex, but demonstrated cerebral blood flow in the whole brain. (Fig 2). On day 22, two-vessel cerebral angiography disclosed almost normal visualization of the cerebral circulation (Fig 3). From days 7 to 13, and acetone assessment was performed to evaluate hypothalamic-pituitary function. By the injection of 250 μg of luteinizing-releasing hormone, the plasma lutein-stimulating hormone level rose to 11 μU/L. Hyponoglycemia induced by the infusion of 0.3 U/kg insulin significantly stimulated the secretion of plasma adrenocorticotropic hormone and plasma cortisol as twice the baseline. The infusion of 0.3 U/kg insulin or 0.5 μg/kg epinephrine failed to increase the serum growth hormone level. A water-deprivation test revealed an obvious increase of the urine osmolality and the plasma ADH level. Urine and plasma osmolality, reached more than 2, and urine output decreased after 16 hours of water deprivation. The relationship of plasma osmolality and ADH secretion was delineated.

There was little change in the infant's condition until day 43, when she regained spontaneous respiration. The respiration irregularly, but not much at a rate of two to three breaths per minute and with a tidal volume of 40 to 50 ml. The arterial blood gases at the respiration revealed a PaO2 of 123.5 mm Hg, a PaCO2 of 50.1 mm Hg, and a pH of 7.38. Neither the stimulation with an aqueous test (Po2 of 77.5 mm Hg maximally) nor infusion of 20 mg of glycopyrrolate increased the rate of spontaneous respiration and tidal volume at all. The other neurologic signs including brainstem reflexes and ancillary tests of EEGs and BAERs were carefully examined, and these results remained unchanged. The irregular spontaneous respiration had continued until day 71, when she died of pneumonia. At autopsy, the structure of the whole brain was preserved. There was no cerebral edema. Light microscopic findings revealed total necrosis in most of the gray matter, including layers of the cerebral cortex and medulla of the brain stem. The white matter had preserved structural structures through nuclei pyramids and chromatolysis, and a hardly atrophic cell shadow (grey cell) was frequently observed. The changes in the cerebellum were relatively mild. The histologic appearance of neuronal necrosis was seen in the paranuclear.

DISCUSSION

Before certification of brain death, the proximate cause of coma must be determined, and irreversibility of the disorders must be confirmed. Almost all the guidelines, therefore, list examples of potentially reversible conditions, such as metabolic disorders, a drug-induced coma, and hypothermia. In our case, severe hypoglycemia caused by insulin infusion was suggested to have caused unexpected agonal. Histologic evidence proved pancreatic necrosis, which is one of the major causes of infant hyperinsulinism, and which possibly caused unexpected agonal or sudden death in infants. Our patient's brain would be severely damaged by insults of both hypoglycemia and anoxia. Hypoglycemia was immediately corrected, and the absence of other reversible or remediable conditions was confirmed in the determination of brain death.

Neurologic examinations and EEGs fulfilled the current criteria to determine brain death in our patient. According to the task force's guidelines, she was diagnosed as brain dead on day 5. However, we thought that she was different from typical brain-dead patients. First, her cerebral injury was caused neither by trauma nor hemorrhage, but by metabolic disorders of hypoglycemia and hypoxia. Second, delayed neurologic deterioration occurred in the absence of intracranial hypertension caused by massive cerebral edema. Third, there was no sequential
circulatory deterioration, which usually occurs soon after brain death. Therefore, she was treated with extreme caution, and the additional ancillary tests were performed after the determination of brain death. Both CT and angiography on days 19 through 22 showed presence of the whole cerebral vascularity and nearly normal perfusion. Results of an assessment of hypalumohypophysical function revealed not only secretion of pituitary hormones, but also evidence of regulations or feedback actions of pituitary hormones. We concluded that this patient had some remnant of hypothalumohypophysical function. Surprisingly, our patient regained spontaneous respiration on day 43, more than 5 weeks since the determination of brain death. The spontaneous respiration was insufficient to remove the respirator, and it did not respond to stimulation by a high level of PCO\textsubscript{2} or doxapram. Irregular bradypnea and no response to both peripheral chemoreceptor stimulation with a high level of PCO\textsubscript{2} and direct stimulation of medullary neurones with doxapram suggest disorders of both the dorsal portion of the medulla, which controls the basic rhythm of respiration, and the pneumotoxic center of the pons, whose signal can increase the breathing rate. The central regulatory mechanism for respiration is complex, because several neural components are involved in the respiratory area located bilaterally in the medulla oblongata and pons, and the central mechanism itself is modulated by many inputs from peripheral chemoreceptors. Although damaged areas of respiratory centers were not clearly confirmed, it was unquestionable that she was not brain dead. Autopsy findings also were not consistent with brain death.

It is emphasized by Kohrmann and Spivak that criteria for brain death must be both sensitive and specific. Although a lack of sensitivity will increase both the financial cost for prolonged maintenance therapy and the loss of organs appropriate for transplantation, the lack of specificity implies a more serious problem, because irreversible absence of all brain stem functions is a cornerstone in the diagnosis of brain death. Although, to our knowledge, there is no published data or documentation about the counterexamples against current criteria, those rare examples surely exist. A previous report by Pasternak and Volpe demonstrated that a 35-week-old premature infant with an intraventricular hemorrhage who had total brainstem failure for 3 days survived with only a mild development delay, although the EEG activity was present. Another 6-week-old infant with seizure and apnea also had both the absence of brain function and a flat EEG but recovered both function and EEG activity the following day. Kohrmann and Spivak reported a 3-month-old infant with encephalitis who fulfilled the task force’s criteria but regained partial cortical and brainstem function the following day, and they asserted the necessity of prolonged observation before the diagnosis of brain death. Those examples show that young children are more likely to survive severe brain insults, and, therefore, we do not consider that the same criteria of brain death should apply to young children and adults. And we question whether new guidelines, including those of the task force, are more reasonable, because evidence from our case demonstrates that the problems of criteria do not involve only the inappropriateness of the observation period. We suggest that the cause of a brain insult may be more arguable in the diagnosis of brain death. In our case, hypoglycemia would be the most important and responsible insult for the infant’s unusual clinical course. We think that extreme caution is necessary when considering brain death from metabolic and toxic causes.

According to a recent review by Farrell and Levin, there are a variety of tests used to document brain death, but no test is absolutely confirmatory of brain death and can only be consistent with the diagnosis, with the possible exception of a four-vessel cerebral angiography showing no cerebral blood flow. Nonfilling cerebral angiography may be irrefutable evidence of brain death, although the converse is not true. We consider that cerebral angiography should be aggressively performed, except when self-evident signs exist such as a massive cerebral contusion or completed rostral-caudal herniation. Especially in a case that requires caution, one confirmatory angiogram is indispensable for the determination of brain death in children. Technical problems with the procedure of angiography should not render it impractical for clinical use.

Criteria for establishing brain death in children still remain controversial. We hardly consider that brain death cannot be diagnosed in infants, but we think that extreme caution should be used in the diagnosis. Our unusual case must be carefully considered in the determination of brain death in young children.

KEN OKAMOTO, MD
TSUYOSHI SUGIMOTO, MD
Department of Traumatology
Osaka University Hospital
Osaka, Japan

REFERENCES
1987;3:5–11
1987;3:89–77
3. Ad Hoc Committee on Brain Death. The Children’s Hospital, Boston.

A set of the neurological age index for the Latin American population was made
The mechanism of cerebral ischemia associated with brain death as seen
Reprint requests to:
Southwestern Medical School
PEDIATRICS
Pediatrics.